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a b s t r a c t

We aim at developing methods to track minimal energy solutions of time-independent m-
component coupled discrete nonlinear Schrödinger (DNLS) equations. We first propose a
method to find energy minimizers of the 1-component DNLS equation and use it as the ini-
tial point of the m-component DNLS equations in a continuation scheme. We then show
that the change of local optimality occurs only at the bifurcation points. The fact leads to
a minimal energy tracking method that guides the choice of bifurcation branch corre-
sponding to the minimal energy solution curve. By combining all these techniques with
a parameter-switching scheme, we successfully compute a non-radially symmetric energy
minimizer that can not be computed by existing numerical schemes straightforwardly.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The main theme of this article is to compute the energy minimizers of m-component coupled discrete nonlinear Schrö-
dinger equations. We consider the time-dependent m-component nonlinear Schrödinger (NLS) equations that are defined as
� i
@

@t
Uj ¼ ½M� VðzÞ�Uj þ ljjUjj2Uj þ

Xm

i–j;i¼1

bijjUij2Uj; ð1aÞ

Uj ¼ Ujðt; zÞ 2 C; z 2 X # Rn; j ¼ 1; . . . ;m; ð1bÞ
Ujðt; zÞ ¼ 0; as z 2 @X; ð1cÞ
where the lj are positive constants, n 6 3;VðzÞ > 0 and bij ¼ bjiði – jÞ are coupling coefficients. If X ¼ Rn, the boundary con-
dition (1c) becomes
Ujðt; zÞ ! 0; as jzj ! 1; t > 0:
To obtain the solitary wave solutions, we set Ujðt; zÞ ¼ e�ikj t/jðzÞ and transform (1) into the time-independent m-component
NLS equations
. All rights reserved.
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½M� VðzÞ�/j � kj/j þ ljj/jj
2/j þ

Xm

i – j;i¼1

bijj/ij
2/j ¼ 0; in Rn; ð2aÞ

/j > 0 in X # Rn; j ¼ 1; . . . ;m; ð2bÞ
/jðzÞ ¼ 0; as z 2 @X: ð2cÞ
To solve Eqs. (2) numerically, we consider the corresponding m-component discrete nonlinear Schrödinger (DNLS) equations
Auj � kjuj þ lju
s

j � uj þ
Pm

i – j;i¼1
biju

s

i � uj ¼ 0;

uj > 0; uj 2 RN; for j ¼ 1; . . . ;m;

8><>: ð3Þ
where uj 2 RN denotes the approximation of /jðzÞ, for j ¼ 1; . . . ;m. Here A 2 RN�N is the standard central finite difference dis-
cretization matrix of the operator ½M� VðzÞ�with the homogeneous Dirichlet boundary conditions on a finite domain X # Rn,
with ujj@X ¼ 0. In addition, A is an irreducible and symmetric negative definite matrix. The size of N depends on the
approximation domain and grid sizes. For example, if a uniform grid size h is applied over a two-dimensional finite domain
½�d; d� � ½�d; d� and 2d

h � 1
� �

is a positive integer, we have a N ¼ 2d
h � 1
� �2

. For u ¼ ðu1; . . . ;uNÞ>;v ¼ ðv1; . . . ;vNÞ>

2 RN;u � v ¼ ðu1v1; . . . ;uNvNÞ> denotes the Hadamard product of u and v and u�r ¼ u � � � � � u denotes the r-time Hadamard
product of u.

The NLS Eqs. (1) model a physical phenomenon in nonlinear optics [1], where the solution Uj denotes the jth component
of the beam in Kerr-like photorefractive media. The positive constant lj measures the self-focusing in the jth component of
the beam; and kj is the chemical potential. The coupling coefficient bij is the interaction between the ith and jth components
of the beam. For bij > 0, the interaction is attractive; otherwise, the interaction is repulsive. Note that in the presence of
strong periodic trapping potentials, the NLS Eqs. (2) can be approximated by the DNLS equations. For example, Eq. (3) de-
scribe a large class of discrete nonlinear systems such as optical fibers [11,12], small molecules such as benzene [13],
and, more recently, dilute Bose-Einstein condensates trapped in a multiwell periodic potential [3,6,23,24].

The problem described in (2) has been considered in several cases. For n ¼ 1, i.e. in one spatial dimension, the system (2)
is integrable. Many analytical and numerical results on solitary wave solutions of m-component NLS equations are well-
studied in, e.g. [10,14–16]. For n ¼ 2 and m ¼ 1, physical experiments in [21] 2-dimensional photorefractive screening
solutions and a 2-dimensional self-trapped beam. It is natural to believe that there are 2-dimensional m-component
ðm P 2Þ solitons and self-trapped beams. A general theorem on the existence of high dimensional m-component solitons
was first proved in [20]. In that paper, the authors show that the signs of the coupling coefficients bij’s are crucial for the
existence of ground state solutions. For m ¼ 3, when all the bij’s are positive, there exists a ground state solution, which
is radially symmetric.

The motivations of this study are twofold. First, while the search of minimal energy solutions of the DNLS equations is of
interest, non-linearity of the equations of the solutions prevents existing numerical schemes from being complete. In par-
ticular, while continuation and homotopy type schemes provide feasible ways for computing various solutions of the DNLS
equations; it remains an challenge to assert the minimality of the computed solutions. Another motivation arises in a the-
oretical prediction reported recently. Lin and Wei [20] consider the case VðzÞ ¼ 0 and m ¼ 3 with one repulsive and two
attractive interactions. They show that if the coupling coefficients jbijj � 1 and the ground state solution exists, then the
ground state cannot be radially symmetric. Computation of such non-radially symmetric energy minimizer can hardly be
achieved by using continuation methods straightforwardly. The solution is actually ‘‘hidden” in the set of solutions and satia-
ble routes leading to the target solution need to be identified.

In this article, we develop numerical schemes for computing minimal energy solutions of the m-component DNLS equa-
tions. The main contributions of this article are highlighted in the following items and the flowcharts in Fig. 1.

	 We develop and prove a globally convergent fixed point iteration method (Fig. 1a) for computing the energy minimizers of
the 1-component DNLS equation. In the case that the decoupled DNLS system has multiple minimizers, Algorithm 1 con-
verges to a local minimizer that depends on the initial solution. However, if the decoupled DNLS system has a unique (and
thus global) minimizer, which is true when VðzÞ ¼ 0 [19], Algorithm 1 is expected to converge to the global minimizer.
These computed global energy minimizers are also used as the initial point of a continuation method for the 3-component
DNLS equations with VðzÞ ¼ 0 to track other minimal energy solutions (Fig. 1c).

	 We propose a scheme for tracking minimal energy solutions by a continuation method (Fig. 1b). To detect solution curves
with minimal energy, we first show that the local minimal energy properties of the solutions remain unchanged between
solution curve bifurcation points under mild assumptions. Consequently, whenever we detect a bifurcation point, we can
probe each of the available bifurcation branches by checking the solution properties one step ahead to determine the tar-
get branch associated with the minimal energy solutions. By following this chosen branch, we can then track minimal
energy solutions along a suitable solution curve.

	 By integrating the above two schemes, we further develop a parameter-switching scheme (Fig. 1c) to qualitatively find the
non-radially symmetric ground state in a 3-component DNLS equations system with two attractive interactions and one
repulsive interaction and VðzÞ ¼ 0. The solution is predicted by [20] in an asymptotic setting. The proposed scheme con-
firms the existence of the solution numerically and visually.



Fig. 1. Flowcharts of the algorithms proposed in this article. (a) Algorithm 1 (fixed point iteration) is used to find energy minimizers of the 1-component
DNLS equation. (b) Algorithm 2 (minimal energy tracking continuation method) is used to track solution curves associated with minimal energy. (c)
Algorithm 3 (continuation parameter switching method) is used to find the non-radially symmetric ground state predicted by [20].
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It is worth noting that, in some other models, the DNLS equations is equipped with an extra normalization constraint on
uj. The induced problem consequently becomes an eigenvalue problem. Numerical schemes such as [4,5,7–9] have been
developed for solving such eigenvalue problems. However, they are not suitable for the target problem considered here.

To define the ground state solution to m-component cases, we first set the Nehari’s manifold
Nm ¼ / ¼ ð/1; . . . ;/mÞ 2 ðH1ðXÞÞmj /j P 0;/j X 0 and
Z

X
jr/jj

2 þ
Z

X
VðzÞ/2

j þ kj

Z
X

/2
j

�
¼ lj

Z
X

/4
j þ

Xm

i – j;i¼1

bij

Z
X

/2
i /

2
j ; j ¼ 1; . . . ;m

)
;

and the energy functional
Eð/Þ ¼
Xm

j¼1

R
X jr/jj

2 þ
R

X VðzÞ/2
j þ kj

R
X /2

j �
lj

2

R
X /4

j

2
þ

 !
� 1

4

Xm

i;j¼1;i – j

bij

Z
X

/2
i /

2
j ; ð4Þ
where / ¼ ð/1; . . . ;/mÞ 2 ðH1ðXÞÞm. Then, we consider the minimization problem
inf
/2Nm

Eð/Þ:
If / ¼ ð/1; . . . ;/mÞ 2 Nm has the following properties:

(i) /j > 0 for all j and / satisfy (2);
(ii) Eð/Þ 6 EðwÞ for any other solution w of (2),

then / is called a ground state solution of (2). In the case of m ¼ 1 (1-component), the ground state solution of (2) can be
obtained from the minimization problem
inf
/P0

/2H1ðXÞ

R
X jr/j2 þ

R
X VðzÞ/2 þ k

R
X /2R

X /4� �1=2 ; ð5Þ
up to a suitable normalization.
We define the corresponding energy functional for the m-component DNLS Eq. (3) as follows: the energy functional Eð/Þ

in (4) becomes
EðuÞ ¼
Xm

j¼1

�u>j Auj þ kju>j uj �
lj

2 us>
j us

j

2

 !
� 1

4

Xm

i;j¼1;i – j

biju
s>
i us

j ; ð6Þ
where the vector u ¼ ðu>1 ; . . . ;u>mÞ
> 2 RNm is in
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Nm ¼ ðu>1 ; . . . ;u>mÞ
> 2 RNmj uj P 0; uj – 0 and � u>j Auj þ kju>j uj ¼ lju

s>
j us

j þ
Xm

i – j;i¼1

biju
s>
i us

j ; j ¼ 1; . . . ;m

( )
:

ð7Þ

Throughout this paper, we use bold face letters or symbols to denote matrices or vectors. For u ¼ ðu1; . . . ;uNÞ>; sut :¼ diagðuÞ
denotes the diagonal matrix of u and kuk4 ¼ ðus>usÞ1=4. For M 2 RN�N;M > 0ðP 0Þ denotes a positive (nonnegative) matrix
with positive (nonnegative) entries, M 
 0 (with M> ¼M) denotes a symmetric positive definite matrix, and rðMÞ denotes
the spectrum of M.

This paper is organized as follows: in Section 2, we develop an iterative method to compute the positive ground state
solution of 1-component DNLS equations and show that the iterative method is globally convergent. In Section 3, we discuss
how we can track bifurcation branches in a continuation method to obtain local minimal energy solutions of the m-compo-
nent DNLS equations. In Section 4, we propose a parameter-switching scheme to compute the non-radially symmetric
ground state for the 3-component DNLS. Conclusion of the paper is given in Section 5.

2. Local and global energy minimizers of decoupled DNLS equations

We begin our discussion of numerical schemes and the corresponding analysis for solving 1-component DNLS equations.
The solution of the decoupled equation is used as the initial solution of the m-component DNLS equations that m > 1. A fixed
point iteration method is developed and analyzed for solving this 1-component DNLS equation. The computed solutions are
local or global minimizers of the corresponding energy functional according to circumstances.

The 1-component DNLS equation is given by
Au� kuþ lus � u ¼ 0;
u > 0; u 2 RN ;

�
ð8Þ
where k and l are positive constants. The variational problem corresponding to (5) can be formulated as
inf
uP0

bEðuÞ; ð9aÞ
where
bEðuÞ ¼ �u>Auþ ku>u

ðus>usÞ1=2 : ð9bÞ
Formulation (9) is equivalent to minimize (6) subject to the constraint (7) with m ¼ 1. Consequently, any solution u 2 RN of
(6) is a local minimum or a saddle point on the Nehari’s manifold (7) with m ¼ 1.

Next, we develop a fixed point iteration method for finding minimizers of (9) based on the following observations. The
matrix A in (8) is generically diagonally dominant with nonnegative off-diagonal entries. That is, �A is an irreducible M-ma-
trix. Let
A ¼ kI� A: ð10Þ
Then A is an irreducible M-matrix because k > 0. It follows that A�1 is positive definite with positive entries (i.e. A�1 
 0 and
A�1 > 0). We define the set
M¼ fu 2 RNj kuk4 ¼ 1; u P 0g; ð11Þ
It is easy to verify that if u 2M, then
A�1u ¼ ðkI� AÞ�1u > 0: ð12Þ

We now define a map f :M!M by
fðuÞ ¼ A�1ut

kA�1utk4

: ð13Þ
Since the map f is well-defined by (12) and (13), we can use f to define the fixed point iteration uiþ1 ¼ fðuiÞ, as in the fol-
lowing algorithm.

Algorithm 1 (Fixed point iteration).
(i) Let A 2 RN�N;u0 > 0 with ku0k4 ¼ 1, and i ¼ 0;

(ii) Solve the linear system
Auiþ1 ¼ ut

i :
Compute uiþ1 ¼ uiþ1=kuiþ1k4.

(iii) If convergent, then u�  uiþ1, stop; else i iþ 1, go to (ii).



Now, we analyze the convergence behavior of Algorithm 1. Detailed proofs of the theorems are given in Appendix A. First,
we show that the 1-component DNLS Eq. (8) has a solution �uðlÞ and the solution can be computed by using the fixed point of
f.

Theorem 1. The map f :M!M given in (13) has a fixed point u� in M
�

. Furthermore, the vector
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�uðlÞ ¼ 1
l1=2 kA

�1u�tk�1=2
4 u� 2 N 1 ð14Þ
solves the 1-component DNLS Eq. (8).

Theorem 1 suggests solving the 1-component DNLS Eq. (8) by Algorithm 1. The following theorems further discuss how
the solution sequence generated by Algorithm 1 converges to a fixed point of f. In Theorem 2 below, we first show that the
energy sequence corresponding to the iterates is decreasing, and therefore a subsequence of the iterates converges to a fixed
point inM of f. In Theorem 5 below, by making a mild assumption, we further show that the whole sequence fuig1i¼0 gen-
erated by Algorithm 1 converges to u� 2 M globally.

Theorem 2. (i) If u 2 M and v ¼ fðuÞ, then bEðvÞ 6 bEðuÞ, where bEð�Þ is defined in (9b), and the equality holds if and only if u is a
fixed point of f :M!M, i.e. fðuÞ ¼ u. (ii) For a sequence fuig1i¼0 generated by Algorithm 1, there exists a subsequence funig

1
i¼0

such that
lim
i!1

uni
¼ u�; ð15Þ
where u� 2 M is a fixed point of the function f defined in (13).

The following corollary can be easily obtained by applying Theorem 2.

Corollary 3. If the minimization problem (9) has a unique global minimizer u� 2 M, then there exists a neighborhood Ru� of u�

such that the fixed point iteration converges to u� for any initial vector u0 2 Ru� . In addition, �uðlÞ, defined in (14), is a global
minimizer of (9).

Now, we discuss how the entire sequence generated by Algorithm 1 converges. To do so, we first define the A-norm of u
by kukA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u>Au

p
and introduce the following lemma. Note that the definition of A-norm is well-defined, as A is positive

definite.

Lemma 4. Let fuig1i¼0 be the sequence generated by Algorithm 1. We have
lim
i!1
kuiþ1 � uikA ¼ 0: ð16Þ
Theorem 5 (Existence of a globally convergent sequence). If u� given in (15) is a strictly local minimum of (9), then the
sequence fuig1i¼0 generated by Algorithm 1 converges to u� 2 M.

In Theorem 5, we have shown that if a limit point u� of fuig1i¼0 is a strictly local minimum of (9), then the sequence fuig1i¼0

generated by Algorithm 1 converges globally to u� 2 M
�

and u� satisfies
ðkI� AÞu� ¼ su�t where s ¼ kA�1u�tk4:
We can then compute �uðlÞ by (14) to find the minimizers of the 1-component DNLS Eq. (8).

Remark 1. The 1-component NLS (i.e. Eq. (2) with m ¼ 1) may associate with multiple local minimizers. In such cases,
finding the global minimizer is a challenging task. However, in the case that VðzÞ ¼ 0, the 1-component NLS equation has a
unique global minimizer [19]. Consequently, the computed solution �uðlÞ is expected to be the ground state solution of the 1-
component DNLS Eq. (8), though in the absence of a rigorous proof. This computed ground state solution is then used in
Section 4 as the initial of a continuation method for tracking the non-radially symmetric energy minimizer predicted in [20]
that also assumes VðzÞ ¼ 0.

Remark 2. Algorithm 1 is similar to the continuous normalized gradient flow method (CNGFM) [5] in the sense that both
methods generate energy decreasing sequences with mass conservation. Actually, Algorithm 1 can be formulated as a special
case of CNGFM as shown below. However, a difference between the two methods does exist. The corresponding energy in
each iteration of Algorithm 1 is decreased with step size equals 1 and the energy diminishing property holds for any initial
vector u0 2 M. In contrast, CNGFM does not guarantee the energy diminishing property, except the virtual time step Dt is
sufficiently small. Such a requirement may slow down convergence rate in the scheme.

Now, we verify the claim given above. We first note that we consider problem (9) for the 1-component DNLS equations.
Since bEðuÞ ¼ bEðcuÞ for c > 0, it is natural to find the minimizers on a ‘‘unit sphere”. Here, we chooseM, which is defined in
(11), as the restriction set. Problem (9) is thus transformed to be the form:
min
u2M

u>Au; ð17Þ
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where A ¼ kI � A. Let eEðuÞ ¼ 1
2 u>Au� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
us>us
p

and consider the minimization problem
min
u2M

eEðuÞ: ð18Þ
One can easily verify that the problems (9), (17) and (18) have the same minimizer. In the following, we shall focus on prob-
lem (18). Taking gradient of eEðuÞ, we have
reEðuÞ ¼ Au� ðus>usÞ�1=2ut:
By applying the CNGFM, we have
utðtÞ ¼ �reEðuðtÞÞ; tn < t < tnþ1 ¼ tn þ Dt; n > 0;
uðtnþ1Þ :¼ uðtþnþ1Þ ¼ uðt�nþ1Þ=kuðt�nþ1Þk4:

(
ð19Þ
By further discretizing (19), we have the following semi-implicit time discretization scheme
~unþ1�un
Dt ¼ �ðA� IÞ~unþ1 � un þ ðus>

n us
n Þ
�1=2ut

n ;

unþ1 :¼ ~unþ1=k~unþ1k4:

(
ð20Þ
Taking Dt ¼ 1 and using the fact that kunk4 ¼ 1, (20) can be reduced to
~unþ1 ¼ A�1ut
n ;

unþ1 :¼ ~unþ1=k~unþ1k4:

(

This is exactly the fixed point iteration (Algorithm 1) proposed in this section for solving minimizers of the 1-component
DNLS equations. Consequently, we claim that the fixed point iteration is a special case of the CNGFM with a large time step
Dt ¼ 1.

3. The minimal energy tracking continuation method

Now, we focus on how to track minimal energy solutions in the framework of continuation methods. After a brief intro-
duction of continuation methods, we discuss the technique for tracking minimal energy solutions. At the end of this section,
we integrate all the proposed ideas into a continuation method algorithm for tracking minimal energy solutions.

3.1. General framework of continuation methods

We briefly introduce a general framework of a continuation method for the m-component DNLS Eq. (3). For a detailed
discussion of the continuation scheme, see [2,8,17,18], for example.

Denote the continuation parameter by b P 0, and rewrite the m-component DNLS Eq. (3) as
Gðx;bÞ ¼ 0; ð21Þ
where x ¼ ðu>1 ; . . . ;u>mÞ
> 2 RmN and G ¼ ðG1; . . . ;GmÞ : RmN � R! RmN is a smooth mapping with
Gjðx;bÞ ¼ Auj � kjðbÞuj þ ljðbÞu
s

j � uj þ
Xm

i – j;i¼1

bijðbÞus

i � uj; ð22Þ
for j ¼ 1; . . . ;m. The parameters kj;lj, and bij in (22) may depend on b. One example is to fix kj and lj and set bijðbÞ ¼ bbij.
Furthermore, we define the solution curve of (21) as
C ¼ fyðsÞ ¼ ðxðsÞ>;bðsÞÞ>j GðyðsÞÞ ¼ 0; s 2 Rg; ð23Þ
assuming that a parametrization via arc-length s is available.
Two main components of a continuation method are to follow the solution curve and to test bifurcation points. To follow

the solution curve, we use the prediction-correction process. Suppose yiðsÞ ¼ ðx>i ðsÞ; biðsÞÞ
> 2 RmNþ1 is a solution lying

(approximately) on the solution curve C. Starting from the point yiðsÞ, standard continuation methods usually take the tan-
gent vector of the solution curve at yiðsÞ as the prediction vector. In particular, the tangent vector can be computed by solving
the linear system
DGðyðsÞÞ _yðsÞ ¼ 0;
which is obtained by differentiating Eq. (21) with respect to s. Here _yðsÞ ¼ ð _xðsÞ>; _bðsÞÞ> is a tangent vector of C at yðsÞ, and
DGðyðsÞÞ ¼ ½GxðyðsÞÞ;GbðyðsÞÞ� 2 RmN�ðmNþ1Þ ð24Þ
denotes the Jacobian matrix of G at yðsÞ. To track the solution curve described in (23), we first find the Euler predictor
yiþ1;1 ¼ yi þ hi _yi; ð25Þ
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where hi > 0 is the step length and _yi is the normalized tangent vector at yi. Newton’s method is then used to find the cor-
rector to improve the accuracy of yiþ1;1. More precisely, for the correction vector dl, the iteration
yiþ1;lþ1 ¼ yiþ1;l þ dl ð26Þ
is computed for l ¼ 1;2; . . . until a convergence criterion is satisfied for l ¼ l1 and we take
yiþ1 ¼ yiþ1;l1 ð27Þ
as a new approximate solution on the solution curve C.
To test bifurcations, we rely on Theorem 6. The theorem gives conditions under which a point on the solution curve is a

bifurcation point. The theoretical and numerical details for detecting bifurcation points of the solution curve C and for tracing
the bifurcation branches can be found in [8,18].

Note that from Theorem 6, we see that a bifurcation point occurs when the matrix Gx is singular.

Theorem 6 (Bifurcation Test [17]). Let C in (23) be a smooth curve of (21) parameterized by s. Suppose detðGxðyðsÞÞÞ changes
sign at s�. Then yðs�Þ is a bifurcation point of (21).

We have discussed how we follow the solution curve and detect bifurcation points in the continuation method. In the
next sub-section, we focus on how we may determine the bifurcation branches associated with minimal energy solutions.

3.2. Minimal energy tracking

In this sub-section, we discuss how to determine whether a solution to the DNLS Eq. (3) is a local minimum of EðxÞ on
Nehari’s manifold Nm. The main result is that each bifurcation point of the solution curve C coincides with a bifurcation
of critical points for EðxÞ on Nm, as will be shown in Theorem 10.

First, we define the necessary notation and discuss how to verify local minimum of EðxÞ onNm by applying standard opti-
mization techniques to the optimization problem
inf
x2Nm

EðxÞ; ð28Þ
where the energy functional EðxÞ and Nehari’s manifold Nm are defined by (6) and (7), respectively. We define the Lagrang-
ian function of the optimization problem (28) as
Lðx; mÞ ¼ EðxÞ �
Xm

j¼1

mjgjðxÞ; ð29Þ
where gjðxÞ ¼ u>j Auj � kju>j uj þ lju
s>
j us

j þ
Pm

i – j;i¼1biju
s>
i us

j ; and m ¼ ðm1; . . . ; mmÞ> 2 Rm are the Lagrange multipliers. Fur-
thermore, the discretized Nehari’s manifold Nm defined in (7) can be written as
Nm ¼ fðu>1 ; . . . ;u>mÞ
> 2 RmNjuj P 0; uj – 0 and gjðxÞ ¼ 0; j ¼ 1; . . . ;mg:
The total derivative of the function g ¼ ðg1; . . . ; gmÞ
>

rgðxÞ ¼

rg1ðxÞ
..
.

rgmðxÞ

2664
3775 2 Rm�mN; ð30Þ
where rgjðxÞ is the row vector given by
ðrgjðxÞÞi ¼
2bijui � us

j ; i – j;

2ðAuj � kjuj þ 2lju
s

j � uj þ
Pm

i – j;i¼1
biju

s

i � ujÞ; i ¼ j:

8><>: ð31Þ
The following theorem gives a test to determine whether a point x 2 RmN is a local minimum of EðxÞ on Nm or not.

Theorem 7 (Nocedal–Wright [22]). Let x be a point in RmN. Suppose that the Karush–Kuhn–Tucker (KKT) conditions
rxLðx; mÞ ¼ 0 and x 2 Nm ð32Þ
are satisfied for a certain m 2 Rm. Suppose also that
w>r2
xxLðx; mÞw > 0; for all w 2 Cðx; mÞ; w – 0; ð33Þ
where Cðx; mÞ is the null space of rgðxÞ in (30). Then x is a strict local minimum solution of EðxÞ on Nm.

Furthermore, we derive the relations between the DNLS Eq. (21) and the optimization problem (28) in the following
remarks.
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1. All solution points lying on the solution curve C of DNLS equation satisfy the KKT conditions (32) with m ¼ 0. From (29)
and Theorem 7, a point x that satisfies the KKT conditions is the solution of
rxEðxÞ> �rgðxÞ>m ¼ 0 andx 2 Nm;
where rgðxÞ is given in (30) and rxEðxÞ ¼ ðru1 EðxÞ; . . . ;rum EðxÞÞ 2 RmN with
ruj
EðxÞ> ¼ Auj � kjuj þ lju

s

j � uj þ
Xm

i – j;i¼1

biju
s

i � uj:
Since the equation rxEðxÞ ¼ 0 is actually the DNLS Eq. (21), we see that if y ¼ ðx>; bÞ> is a solution of the DNLS Eq. (21),
then x 2 Nm andrxLðx;0Þ ¼ 0. That is, all points on the solution curve C of the DNLS equation satisfy the KKT conditions
(32) with m ¼ 0.

2. We define the projected Hessian matrix Hðyðs�ÞÞ, to be used later for testing positive definiteness. Let y ¼ ðx>; bÞ> be a
point on C. We define the projected Hessian matrix at y to be
HðyÞ � PðxÞ>r2
xxLðx;0ÞPðxÞ ¼ PðxÞ>GxðyÞPðxÞ; ð34Þ
where GxðyÞ is given in (24). Here PðxÞ 2 RmN�‘ is the matrix whose columns form an orthonormal basis of the null space
of rgðxÞ. In other words,
½rgðxÞ�PðxÞ ¼ 0; ð35Þ
and if rgðxÞ is of full row rank, then ‘ ¼ mN �m.
3. Applying the above two remarks and considering the path yðsÞ that describes the solution curve C, observe that if yðsÞ is a

local minimum of (28) for s < s� and a saddle point for s > s�, then from (33) in Theorem 7, the projected Hessian matrix
Hðyðs�ÞÞ is singular.

We have presented the relations between the DNLS Eq. (21) and the optimization problem (28). Now, we develop the
relations between the solution curve bifurcation and the critical point bifurcation by applying Theorem 6 (for the solution
curve bifurcation test) and Theorem 7 (for the optimality test). Specifically, in Lemma 8, we show that for each bifurcation
point y� ¼ yðs�Þ 2 C, i.e. where the matrix Gxðy�Þ is singular, the projected Hessian matrix Hðy�Þ is singular. In Lemma 9, we
show that the converse of Lemma 8 is true whenever the auxiliary matrix RðyÞ is invertible. Here
RðyÞ ¼ ð2biju
s>
i us

j Þ; ð36Þ
and we set bii ¼ li.

Lemma 8. Let y� be a bifurcation point of the DNLS Eq. (21) along the solution curve C. Then detðHðy�ÞÞ ¼ 0.

Lemma 9. Let y� 2 C. If detðHðy�ÞÞ ¼ 0 and Rðy�Þ is invertible, then detðGxðy�ÞÞ ¼ 0.

The above two lemmas suggest the following result. Let y� 2 C and Rðy�Þ be an invertible matrix, then detðHðy�ÞÞ ¼ 0 if
and only if detðGxðy�ÞÞ ¼ 0. In other words, the bifurcation of the solution curves C and the bifurcation of the critical points
for EðxÞ on Nm occur at exactly the same points.

Combining Lemmas 8 and 9, we can see that solutions lying on a so-called ‘‘solution segment” have the same critical point
characteristics. Before giving the rigorous statement of the result in Theorem 10, we first define the solution segment. Let
y0 ¼ yðs0Þ be any regular point (i.e. detðGxðy0ÞÞ– 0) of the solution curve C. Let Csegðy0Þ# C be a maximal connected set with-
out bifurcation point and containing y0. That is, a solution segment
Csegðy0Þ ¼ fyðsÞ 2 C j detðGxðyð�sÞÞÞ – 0 for �s between s0 and sg: ð37Þ
Now, we state the theorem that can be used to choose suitable bifurcation branches that lead to minimal energy solutions
while bifurcations occur.

Theorem 10. Let y0 ¼ ðx>0 ; b0Þ> 2 C with detðGxðy0ÞÞ– 0 and suppose that RðyÞ is invertible for each y 2 Csegðy0Þ. If x0 is a strict
local minimum solution of EðxÞ on Nm, then for each y ¼ ðx>; bÞ> 2 Csegðy0Þ;x is a strict local minimum solution of EðxÞ on Nm.

In summary, Theorem 10 suggests that along the solution curve C tracked by a continuation method, if the initial point is a
local minimum of EðxÞ on Nm and the local minimum becomes a saddle point somewhere along the solution curve, then it
must meet a bifurcation point under some mild assumptions. Consequently, whenever we detect a bifurcation point, we can
track each of the available bifurcation branches one step ahead and test the positivity of the corresponding projected Hessian
matrices. According to Theorem 10, we can then determine which one is the local minimum energy branch.

3.3. The overall algorithm

Finally, we conclude this section by proposing the minimal energy tracking continuation method (METCM) in
Algorithm 2.
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Algorithm 2 (Minimal energy tracking continuation method (METCM)).

(i) [Initialization] Determine an initial solution yð0Þ by letting bð0Þ ¼ 0 (e.g. use Algorithm 1 to solve the resulting decou-
pled DNLS equations).

(ii) [Solution curve following] Iterate until bifurcation occurs.

(a) Compute the next solution yðsÞ by the predictor–corrector scheme described in (25)–(27).
(b) Detect the bifurcation point by Theorem 6 and techniques described in [8,18].
(iii) [Minimal energy solution curve detection]

(a) Track one step ahead for each of the available bifurcation branches.
(b) Test the positiveness of the corresponding projected Hessian matrices.
(c) Pick one bifurcation branch with positive projected Hessian matrices as the next minimal energy solution curve

to be followed.

(iv) Go to Step (ii) to follow the next solution curve or stop.

Note that in Step (i) of the algorithm, we may set bij ¼ 0 and solve the decoupled DNLS Eq. (3) by Algorithm 1 and (14) to
obtain the initial solution yð0Þ ¼ ðð�u; �u; �uÞ>;0Þ> for m ¼ 3. In Step (iii-b), it is possible to identify more than one minimal en-
ergy branch. We can track all these branches simultaneously in parallel computations.

To conclude this section, we give a simple example to illustrate the key components discussed in this section. The main
goal is to show how we can track energy minimizers of EðxÞ ¼ 0:5x4 þ ð1� bÞx2 by the METCM. Here, x 2 R and b is the con-
tinuation parameter. By setting Gðx; bÞ :¼ E0ðxÞ ¼ 2x2 þ 2ð1� bÞx, we can see that (i) the solutions of Gðx; bÞ ¼ 0 are actually
the critical points of EðxÞ, (ii) the solution curve C of Gðx; bÞ ¼ 0 is the union of the trivial curve C0 ¼ fð0; bÞj b 2 Rg and the
parabolic curve Cp ¼ fð

ffiffiffiffiffiffiffiffiffiffiffiffi
b� 1

p
; bÞj b > 1g, (iii) y� ¼ ð0;1Þ 2 C0 is a bifurcation point, as C0 is a smooth curve with parameter

b and Gxð0; bÞ ¼ 2ð1� bÞ changes sign at b� ¼ 1.
Theorem 6, and (iv) The local minima of EðxÞ occur at 0 for b < 1 and at 

ffiffiffiffiffiffiffiffiffiffiffiffi
b� 1

p
for b > 1.

Starting from y0 ¼ ð0;0Þ 2 C, we track the solution curve until we meet the bifurcation point y� ¼ ð0;1Þ. As the point
y0 ¼ ð0;0Þ is a strict local minimum of EðxÞ with detðGxðy0ÞÞ– 0 and detðGxðy�ÞÞ ¼ 0, Theorem 10 suggests that all the solu-
tions on the solution segment, as defined in (37), Csegðy0Þ ¼ fð0; bÞj b < 1g are all strict local minimizers. To detect minimal
energy solution curve as suggested in Step (iii) of Algorithm 2, we take one step ahead on the three available bifurcation
branches and test the points

ffiffiffiffiffiffiffiffiffiffiffiffi
b� 1

p
; b

� �
; �

ffiffiffiffiffiffiffiffiffiffiffiffi
b� 1

p
; b

� �
and ð0; bÞ for b ¼ 1þ to determine the next minimal energy curve

to be followed. By doing so, we can track the local minimum energy curve Cp rather than fð0; bÞj b > 1g. It is worth noting
that, a straightforward calculation can verify that the local minimum curve of EðxÞ is Csegðy0Þ [ Cp; which matches the results
obtained by the METCM exactly.
4. Minimal energy tracking for non-radially symmetric solutions

In this section, we demonstrate the capabilities of the METCM by finding non-trivial minimal energy solutions of a 3-com-
ponent DNLS problem that has one repulsive and two attractive interactions and assumes VðzÞ ¼ 0. Our main tools are three-
fold: the computation of the ground states of the decoupled DNLS equations in Section 2, the minimal energy tracking
continuation method in Section 3, and a parameter-switching scheme to be discussed below. By combining these techniques,
we can find a 3-component non-radially symmetric energy minimizer while bij approaches zero. The existence of such non-
radially symmetric solution has been predicted by Lin and Wei theoretically [20] for m ¼ 3 and VðzÞ ¼ 0 in Eqs. (2). They
show that with one repulsive and two attractive interactions, if the coupling coefficients jbijj � 1, and the ground state solu-
tion exists, then the ground state must be non-radially symmetric. Furthermore, the corresponding energy is smaller than
the energy of the positive radially symmetric solution.

Using notations similar to those in [20], we consider the following 3-component DNLS equations by assuming
k1 ¼ k2 ¼ k3 ¼ l1 ¼ l2 ¼ l3 ¼ 1. We also rewrite bij ¼ bdij and assume d12 ¼ d21; d13 ¼ d31, and d23 ¼ d32,
Au1 � u1 þ ut

1 þ bd21us

2 u1 þ bd31us

3 u1 ¼ 0; ð38aÞ
Au2 � u2 þ ut

2 þ bd12us

1 u2 þ bd32us

3 u2 ¼ 0; ð38bÞ
Au3 � u3 þ ut

3 þ bd13us

1 u3 þ bd23us

2 u3 ¼ 0: ð38cÞ
Note that the matrix A in Eqs. (38) is the discretization matrix of the Laplacian only as VðzÞ ¼ 0.
To the best of our knowledge, such non-radially symmetric solutions have not been computed and visualized numerically.

Simple straightforward numerical methods cannot lead to non-radially symmetric solutions. For example, only radially sym-
metric solutions are found for small bij’s if we simply follow the solution curve
Cb ¼ fðx>;bÞ>j Gðx; bÞ ¼ 0 is given inð38Þ with d12 ¼ d13 ¼ 1 and d23 ¼ �1; for b 2 Rþg:
by starting from b ¼ 0 [18].
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Now, we describe how we can find the non-radially symmetric solutions for the case of one repulsive and two attractive
interactions in the 3-component DNLS Eqs. (38). We first propose a continuation parameter-switching scheme with an aux-
iliary illustration in Fig. 2. Then we describe the motivations behind the scheme.

Algorithm 3 (Continuation parameter switching method).
(i) Compute the initial solution ð�u; �u; �uÞ by Algorithm 1, where �u is the solution of the 1-component DNLS (or the decou-
pled DNLS for b ¼ 0).

(ii) Let b be the continuation parameter. Use METCM to track the solution curve
Fig
C1 ¼ fðx>;bÞ>j Gðx;bÞ ¼ 0 is given inð38Þ with d12 ¼ d13 ¼ d23 ¼ 1; for 0 6 b 6 0:2g

from b ¼ 0 to b ¼ 0:2.

(iii) Let d23 be the continuation parameter and fix b ¼ 0:2. Use METCM to track the solution curve
C2 ¼ fðx>; d23Þ>j Gðx; d23Þ ¼ 0 is given inð38Þ with b ¼ 0:2; d12 ¼ d13 ¼ 1; for � 1 6 d23 6 1g:

from d23 ¼ 1 to d23 ¼ �1.

(iv) Let b be the continuation parameter. Use METCM to track the solution curve
C3 ¼ fðx>;bÞ>j Gðx;bÞ ¼ 0 is given inð38Þ with d12 ¼ d13 ¼ 1 and d23 ¼ �1; for b 2 Rg;

from b ¼ 0:2 to b � 0þ.
We implement Algorithm 3 on a square domain ½�5;5� � ½�5;5� with grid size h ¼ 0:2. We plot the conceptual solution
curves (with bifurcation points) and the corresponding energy curves of C2 in Figs. 3 and 4, respectively. We use the same
curve styles in these two figures to indicate the corresponding solution curves. Similarly, the bifurcation diagram and energy
curves of C3 are shown in Figs. 5 and 6, respectively. In the solution curves (i.e. Figs. 3 and 5) the corresponding nodal do-
mains of three positive bound state solutions of certain segments of the solution curves are attached in triples near the solu-
tion curves. In each of the nodal domain triples, the left, middle and right figures are the density plots of u1;u2 and u3,
Fig. 2. Illustration for the curves C1; C2 and C3 in Steps (ii)–(iv) of Algorithm 3.

. 3. A bifurcation diagram of the solution curve for C2 ¼ fðx>; d23Þ>j Gðx; d23Þ ¼ 0 is given in (38) with b ¼ 0:2; d12 ¼ d13 ¼ 1, for �1 6 d23 6 1g.



Fig. 4. Energy curve of C2.

Fig. 5. A bifurcation diagram of the solution curve for C3 ¼ fðx>; bÞ>j Gðx;bÞ ¼ 0 is given in (38) with d12 ¼ d13 ¼ 1 and d23 ¼ �1, for b 2 Rg.

Fig. 6. Energy curve of C3.
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respectively. As the solution formats remain similar unless bifurcation occurs, only one representative nodal domain triple is
shown for each of the solution curve segments. In Figs. 4 and 6, the plots of the nodal domains (in the form of squared sums)
overlap to show their relative positions. The corresponding triples and overlapping nodal domains are labeled by the same
capital letters in different figures, e.g. Figs. 3 and 4.

Now, we justify the continuation parameter-switching scheme and note some observations from the numerical results
shown in the figures.

1. In Step (ii) of Algorithm 3, we follow the solution curve C1 by increasing b from 0 to 0.2. As the initial solution ð�u; �u; �uÞ is
the global (thus also local) minimal energy solution, and there is no bifurcation found in the interval 0 6 b 6 0:2, the
states of the solutions are thus unchanged by Theorem 10. That is, all the intermediate solutions are all local minimal
solutions corresponding to each of the b’s. Furthermore, we anticipate that all these solutions corresponding to each of
the b’s are ground state solutions, due to the following observation. In this setting, all the interactions are attractive. Con-
sequently, the three components tend to gather together and concentrate at the center of the domain to achieve minimal
energy. Such solution profiles are similar to the solution profile of the initial solution ð�u; �u; �uÞ for b ¼ 0. It is thus reason-
able that ð�u; �u; �uÞ is a good initial guess for the global minimal solution of a DNLS with a small positive b. By using the
continuation method, we thus can track the global minimal solutions in C1.

2. The curve C2 acts as a ‘‘bridge” connecting the two settings in Step (ii) and Step (iv) Algorithm 3. In particular, d23 is chan-
ged from 1 (three attractive interactions) to �1 (one repulsive and two attractive interactions). Fig. 3 shows that there is
only one bifurcation point in C2, where d23 ¼ �0:314. At this bifurcation point, METCM suggests tracking either the upper



Fig. 7. Compared with Cb , the solution curve C3 has lower energies.
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or the lower bifurcation branch (the red1 curves) to retain minimal energy solutions. By tracking either one of the branches,
non-radially symmetric solutions are observed. Furthermore, as shown in Fig. 4, the solutions of these bifurcation branches
have lower energies than the ones on the primal stalk of C2 (the blue curve).

3. In Step (iv) of Algorithm 3, we switch to the target setting, in which one repulsive and two attractive interactions are
assumed. We use the non-radially symmetric solution obtained in the terminal point of C2, in which d23 ¼ �1, as the ini-
tial guess for tracking the curve C3. If we decrease b from 0.2 to 0þ, the target non-radially symmetric solutions are
obtained while b approaches zero. As shown in Fig. 5, no bifurcation occurs for 0 < b 6 0:2, so all the computed solutions
remain minimal energy solutions. Consequently, we find the non-radially symmetric solution for one repulsive and two
attractive interactions with small b.

In short, we have shown how the parameter-switching scheme can lead to the non-radially symmetric solution predicted
in [20]. These non-radially symmetric positive solutions are expected to be the ground state solutions of (38). This conjecture
is based on the following observations. We start from the ground state solution for b ¼ 0 and then track C1 until b ¼ 0:2. We
then track the path with lower energy solutions in C2, when the only bifurcation occurs, and obtain non-radially symmetric
solutions. As there is no other bifurcation point in C3, the value for b changes from 0.2 to 0þ. The ground state character of the
initial solutions is preserved in the tracked non-radially symmetric solutions.

Finally, we make the following remarks on the numerical experiments.

Remark 3. We can also track the primal stalk of C2 in Step (iii) of Algorithm 3 until d23 ¼ �1 (i.e. the blue curve in Fig. 3), and
then track Cb by decreasing b ¼ 0:2 to 0þ. However, we would only find radially symmetric solutions, whose energies are
higher than those of the non-radially symmetric solutions we have found.
Remark 4. In Fig. 7, we compare the energy curves of C3 and Cb. The energy curve of C3 is lower than that of Cb. This result is
obviously consistent with the consequence reported in [20].
Remark 5. Another type of non-radially symmetric positive solution can be found by following the solution curve C3 and
increasing the values of b from 0.2 to 1�. A representative of such solutions is shown in Fig. 5 for b � 0:969.
5. Conclusion

This article focused on the use of continuation methods to solve the time-independent m-component discrete nonlinear
Schrödinger equations. In particular, we propose a new algorithm that is capable of tracking the local minimal energy solu-
tions along the solution curves. We have also shown how we may compute the ground states of the decoupled discrete non-
linear Schrödinger equation with VðzÞ ¼ 0. By combining these two techniques with a parameter-switching scheme, we find
non-radially symmetric minimal energy solutions for the case with one repulsive and two attractive interactions and small
coupling coefficients.

We believe our minimal energy tracking continuation method can be applied to other coupled elliptic partial differential
equations, probably with suitable modifications. The method thus acts as a useful tool for exploring various steady-state
solutions of the differential equations.
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Appendix A

A.1. Proof of Theorem 1

Eqs. (12) and (13) imply that f is continuous onM. By the definition of (11),M is homeomorphic to an ðN � 1Þ-dimen-
sional standard simplex, which is convex and compact. Applying the Schauder fixed point theorem to f, we can see that there
is a point u� 2 M satisfying
fðu�Þ ¼ u�: ð39Þ

The existence of the fixed point u� 2 M

�
follows from the fact that the function f in (13) mapsM intoM

�
. From (10), (13) and

(39), we have
kA�1u�tk�1
4 u�t ¼ ðkI� AÞu�: ð40Þ
Multiplying (40) by 1
l1=2 kA�1u�tk�1=2

4 from the left and setting
�uðlÞ ¼ 1
l1=2 kA

�1u�tk�1=2
4 u�;
we obtain
A�uðlÞ � k�uðlÞ þ l�uðlÞt ¼ 0:
It is easy to verify that �uðlÞ belongs to N 1. This completes the proof. h

A.2. Proof of Theorem 2

(i) Since u;v 2 M, we have kuk4 ¼ 1; kvk4 ¼ 1 and
bEðvÞ ¼ v>ðkI� AÞv: ð41Þ
Substituting v ¼ fðuÞ ¼ A�1ut

kA�1utk4
into (41), we get
bEðvÞ ¼ v>ðkI� AÞv ¼ 1
kA�1utk4

v>ut:
Letting c ¼ 1
kA�1utk4

and applying the Hölder inequality (jx>yj 6 kxkpkykq where 1
pþ 1

q ¼ 1 and p > 1) with p ¼ 4; q ¼ 4=3;x ¼ v
and y ¼ ut, we obtain
v>ðkI� AÞv 6 ckvk4kuk
3
4 ¼ c: ð42Þ
Since kuk4 ¼ 1, we have
c ¼ u>AA�1ut

kA�1utk4

¼ u>ðkI� AÞv: ð43Þ
Since kI� A is positive definite, it has the Cholesky factorization ðkI� AÞ ¼ L>L. Applying the Cauchy-Schwarz inequality to
(43), we obtain
c ¼ u>L>Lv 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u>L>Lu

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v>L>Lv

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u>ðkI� AÞu

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v>ðkI� AÞv

p
: ð44Þ
From (42) and (44), it follows that
v>ðkI� AÞv 6 c 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u>ðkI� AÞu

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v>ðkI� AÞv

p
ð45Þ
and therefore
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v>ðkI� AÞv

p
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u>ðkI� AÞu

p
:

Using the fact that kvk4 ¼ kuk4 ¼ 1, we have
bEðvÞ ¼ v>ðkI� AÞv
kvk2

4

6
u>ðkI� AÞu
kuk2

4

¼ bEðuÞ: ð46Þ
The equality in (46) holds if and only if the inequalities in (42) and (44) become equalities. Furthermore, both inequalities in
(42) and (44) hold if and only if the vectors v and u are linearly dependent, i.e. v ¼ au for some a 2 R. Since v > 0;u > 0 with
kvk4 ¼ kuk4 ¼ 1, we have v ¼ u. Hence, the equality in (46) holds if and only if u is a fixed point of f.

(ii) Since the sequence fuig1i¼0 �M is bounded, there exists a convergent subsequence funi
g1i¼0 and a point u� 2 M such

that
lim
i!1

uni
¼ u�:
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Consequently, we have
lim
i!1

bEðuni
Þ ¼ bEðu�Þ and lim

i!1
bEðfðuni

ÞÞ ¼ bEðfðu�ÞÞ; ð47Þ
as f and bE are continuous. Furthermore, since the cost function bEð�Þ in (9b) is continuous on the compact setM, the functionbEð�Þ :M! Rþ attains its minimum value on M. From part (i) of this theorem, it can be easily seen that the sequence
fbEðuiÞg1i¼1 converges to a certain positive number bE�. That is,
lim
i!1

bEðuiÞ ¼ bE�: ð48Þ
By Eqs. (47) and (48), and the fact that fbEðuni
Þg1i¼0 and fbEðfðuni

ÞÞg1i¼0 are subsequences of fbEðuiÞg1i¼0, we see that the three
sequences converge to the same value. Consequently, we have
bEðfðu�ÞÞ ¼ bEðu�Þ:

By part (i) of this theorem, we conclude that fðu�Þ ¼ u�. h

A.3. Proof of Lemma 4

By definition,
kuiþ1 � uik2
A ¼ ðuiþ1 � uiÞ>Aðuiþ1 � uiÞ ¼ u>iþ1Auiþ1 þ u>i Aui � 2u>iþ1Aui ¼ bEðuiþ1Þ þ bEðuiÞ � 2u>iþ1Aui: ð49Þ
From (42), (43) and (45), we have
bEðuiþ1Þ 6 u>iþ1Aui 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibEðuiþ1Þ
q ffiffiffiffiffiffiffiffiffiffiffiffibEðuiÞ

q
: ð50Þ
Furthermore, by (49) and (50), it follows that
kuiþ1 � uikA 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibEðuiÞ � bEðuiþ1Þ
q

; ð51Þ
or equivalently, limi!1kuiþ1 � uikA ¼ 0: h

A.4. Proof of Theorem 5

Since u� is a strictly local minimum of the optimization problem (9), the Hessian matrix Hðu�Þ of bEðuÞ is positive definite.
Therefore, there is a d > 0 such that HðuÞ is positive definite, i.e. bEðuÞ is convex, for u 2 M and ku� u�kA < d.

For any positive number 0 < e < d=2, we let
bEe ¼ min
ku�u�k

A
¼e
bEðuÞ > bE�; ð52Þ
where bE� is given by (48), and define
Bðu�; bEeÞ ¼ u 2 M ku� u�kA < e; bEðuÞ < bEe

��� on
: ð53Þ
From (15) and (16), there exists N0 2 N such that
unj
2 Bðu�; bEeÞ and kuiþ1 � uikA < e for nj; i > N0: ð54Þ
Since 2e < d, if ui 2 Bðu�; bEeÞ and kuiþ1 � uikA < e, then kuiþ1 � u�kA < 2e. On the other hand, using the fact thatbEðuiþ1Þ 6 bEðuiÞ < bEe and bEðuÞ is convex on ku� u�kA < d it holds that uiþ1 2 Bðu�; bEeÞ. Thus, we have
kui � u�kA < e for all i > N0:
This completes the proof. h

A.5. Proof of Lemma 8

Since y� ¼ ðx�>; b�Þ> is a bifurcation point, the matrix Gxðy�Þ is singular. Thus there exists a nonzero vector
z ¼ ðz>1 ; . . . ; z>mÞ

> 2 RmN such that
Gxðy�Þz ¼ 0: ð55Þ
Now, we claim thatrgðx�Þz ¼ 0. Since y� is a solution of DNLS Eq. (21) and x� ¼ ðu�>1 ; . . . ;u�>m Þ
>, the vectorrgjðx�Þ in (31) can

be written as
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rgjðx�Þ
> ¼

2b1ju�1 � u�sj

..

.

2bðj�1Þju�j�1 � u�sj

2lju
�
j � u�sj

2bðjþ1Þju�jþ1 � u�sj

..

.

2bmju�m � u�sj

26666666666666664

37777777777777775
2 RmN; ð56Þ
for j ¼ 1;2; . . . ;m. Let
Uðx�Þ ¼

u�1 0 � � � 0

0 u�2
. .

.
0

..

. ..
. . .

.
0

0 � � � � � � u�m

0BBBBB@

1CCCCCA 2 RmN�m: ð57Þ
A calculation leads to
Uðx�Þ>Gxðy�Þ ¼ rgðx�Þ: ð58Þ
From (55) and (58), it is easy to verify that rgðx�Þz ¼ 0, that is, there exists a nonzero vector �z 2 R‘ such that z ¼ Pðx�Þ�z.
Hence, from (34), we obtain Hðy�Þ�z ¼ 0, i.e. detðHðy�ÞÞ ¼ 0.

A.6. Proof of Lemma 9

First, we note that from (36), (57), (58) and (59), we have
UðxÞ>GxðyÞUðxÞ ¼ RðyÞ; ð59Þ
for each y ¼ ðx>; bÞ> 2 C.
Since y� ¼ ðx�>; b�Þ> 2 C and detðHðy�ÞÞ ¼ 0, there exists a nonzero vector �z 2 RmN�m such that
Hðy�Þ�z ¼ 0: ð60Þ
Let z ¼ Pðx�Þ�z 2 RmN . Note that z is a nonzero vector, since Pðx�Þ is of full column rank. Now we claim that Gxðy�Þz ¼ 0. From
(59) and (58), it follows that
Uðx�Þ>Gxðy�Þz ¼ rgðx�Þz ¼ 0: ð61Þ
On the other hand, from (34) and (60) we have
Pðx�Þ>Gxðy�Þz ¼ 0: ð62Þ
Combing (61) and (62) gives
Pðx�Þ>

Uðx�Þ>

" #
Gxðy�Þz ¼ 0: ð63Þ
We calculate that
Pðx�Þ>

rgðx�Þ

" #
½Pðx�Þ;Uðx�Þ� ¼ ImðN�1Þ Pðx�Þ>Uðx�Þ

0 Rðx�Þ

" #
: ð64Þ
Here, the (1,1) entry in (64) follows from the fact that the column vectors of Pðx�Þ are orthonormal, the (2,1) entry follows
from Eq. (35) and the (2,2) entry follows from Eqs. (58) and (59). Since Rðy�Þ is invertible, it follows that the mN �mN matrix
½Pðx�Þ;Uðx�Þ� is invertible. From (63), we obtain Gxðy�Þz ¼ 0, that is, detðGxðy�ÞÞ ¼ 0.
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